Subscribe:

Ads 468x60px

Pages

Rabu, 06 Mei 2015

GELOMBANG


Sulit untuk membuat suatu definisi tentang semua yang mencakup aspek dari kata gelombang. Sebuah getaran dapat didefinisikan sebagai sebuah gerakan bolak balik di sekitar nilai referensi. Namun, sebuah getaran belum tentu sebuah gelombang. Sebuah usaha untuk menetapkan keperluan dan karakteristik yang mencukupi yang memenuhi kriteria sebagai sebuah fenomena yang dapat disebut sebagai sebuah Gelombang yang menghasilkan garis perbatasan kabur.
Kata gelombang kadang dipahami secara intuitif sebagai suatu yang mengacu kepada transportasi spesial gangguan yang secara umum tidak disertai oleh sebuah gerakan dari medium yang menempati suatu ruangan secara keseluruhan. Pada gelombang, energi dari sebuah getaran berpindah jauh dari sumbernya dalam bentuk sebuah gangguan di sekitar mediumnya (Hall 1990, hal. 8). Namun, gerakan ini bermasalah untuk sebuah gelombang transversal (misalnya, gelombang pada tali), di mana energi bergerak di kedua arah yang sama, atau untuk gelombang elektromagnetik / cahaya dalam hampa udara, dimana konsep medium tidak berlaku dan interaksi dengan suatu target adalah kunci utama untuk pendeteksian dan penerapan praktis sebuah gelombang. Antara lain gelombang air pada permukaan air laut; gelombang cahaya dihasilkan oleh Matahari; micriwave digunakan di oven microwave; penyiaran gelombang radio oleh stasiun radio; dan gelombang suara dihasilkan oleh penerima gelombang radio, ponsel dan makhluk hidup (sebagai suara), untuk menyebutkan hanya sedikit fenomena gelombang.
Mungkin itu terlihat bahwa deskripsi dari gelombang berhubungan dekat ke asal fisiknya untuk setiap contoh spesifik dari proses terbentuknya gelombang. Contohnya, akustik dibedakan dari optik dalam gelombang suara terkait ke mekanik daripada ke perpindahan gelombang elektromagnetik disebabkan oleh getaran. Konsep-konsep seperti massa,momentum, inertia, atau elastisitas, oleh karena itu penting dalam menggambarkan akustik (sebagai yang berbeda dari  optik) untuk proses terbentuknya gelombang. Perbedaan dalam pengenalan awal karakteristik gelombang tertentu terhadap sifat dari medium yang terlibat. Contohnya, dalam kasus udara: vortex,tekanan radiasi, gelombang kejut dan lain lain; dalam kasus benda padat: gelombang Rayleigh, dispersi; dan sebagainya.
Sifat-sifat yang lain, namun, meskipun biasanya digambarkan dalam hal asal, mungkin disamaratakan untuk semua gelombang. Untuk beberapa alasan, teori gelombang mewakili cabang fisika tertentu yang prihatin dengan sifat dari proses terbentuknya gelombang secara bebas dari asal fisik mereka. Contohnya, berdasarkan asalnya secara mekanik dari gelombang akustik, gangguan yang berpindah dalam ruang waktu bisa ada jika hanya medium yang terlibat bukan kaku tak terbatas maupun Lentur yang tak terbatas.

Pengertian Foton


Foton adalah jenis partikel dasar yang membentuk unit dasar radiasi elektromagnetik, yang meliputi gelombang radio, inframerah, cahaya tampak, ultraviolet, sinar-X, dan sinar gamma. Foton tidak memiliki massa, tidak ada muatan listrik, dan berjalan dengan kecepatan cahaya. Tidak seperti beberapa partikel, seperti proton dan neutron, mereka tidak dianggap terdiri dari komponen yang lebih kecil. Foton termasuk ke dalam kelas partikel yang bertanggung jawab atas gaya dasar alam, dan membawa gaya elektromagnetik. Menurut teori elektrodinamika kuantum, cara partikel bermuatan listrik bersikap terhadap satu sama lain dapat digambarkan dalam hal foton.
Spektrum cahaya tampak
Foton adalah unit dasar dari radiasi elektromagnetik, spektrum yang meliputi cahaya tampak.
Percobaan yang dilakukan di abad ke-19 tampaknya membuktikan bahwa cahaya terdiri dari gelombang. Namun, pada awal abad ke-20, percobaan lainnya menunjukkan bahwa itu terdiri dari partikel-partikel. Meskipun tampaknya bertentangan, cahaya dan bentuk lain dari radiasi elektromagnetik sebenarnya berperilaku baik sebagai bentuk. Foton adalah partikel cahaya, tetapi mereka juga memiliki sifat seperti gelombang, seperti panjang gelombang dan frekuensi.
Materi dapat berinteraksi dengan partikel cahaya dalam beberapa cara. Sebuah elektron dalam sebuah atom, misalnya, dapat menyerap foton, menyebabkan ia melompat ke tingkat energi yang lebih tinggi. Seiring waktu, elektron dapat kembali ke tingkat energi yang lebih rendah, memancarkan energi ekstra sebagai sebuah foton. Mata mampu mendeteksi cahaya karena molekul tertentu dalam retina menyerap energi dari foton dalam kisaran cahaya tampak frekuensi. Energi ini diubah menjadi impuls listrik yang berjalan di sepanjang saraf optik keotak.
Dalam beberapa kasus, elektron dapat menyerap relatif partikel energi tinggi sinar ultraviolet kemudian memancarkan energi foton dengan panjang gelombang yang lebih panjang dari cahaya tampak, sebuah fenomena yang dikenal sebagai fluoresensi. Molekul dapat menyerap energi pada frekuensi inframerah, yang menyebabkan mereka untuk bergerak lebih, sehingga terjadi peningkatan suhu; ini adalah mengapa benda dapat dipanaskan oleh sinar matahari atau pemanas listrik. Foton dengan yang berenergi tinggi, seperti sinar-X dan sinar gamma, dapat memiliki efek merusak pada materi. Mereka memiliki energi yang cukup untuk menghilangkan elektron dari atom, membentuk ion bermuatan positif, dan untuk memecah ikatan kimia. Efek ini menyebabkan perubahan kimia yang bisa sangat merusak organisme hidup.

Penemuan

Konsep dan penemuan foton terkait erat dengan perkembangan teori kuantum. Sekitar tahun 1900, fisikawan teoritis Max Planck menemukan solusi untuk masalah yang dihadapi ilmuwan dalam beberapa waktu, yang melibatkan frekuensi radiasi elektromagnetik yang dipancarkan oleh suatu benda pada berbagai suhu. Ia mengusulkan bahwa energi datang sebagai unit kecil, yang terpisahkan, yang disebutnya quanta. Karya Albert Einstein pada efek fotolistrik pada tahun 1905 memberikan bukti eksperimental yang kuat bahwa kuanta adalah nyata. Ia tidak sampai tahun 1926, istilah “foton” pertama kali digunakan – oleh kimiawan Gilbert N. Lewis – untuk menggambarkan kuanta cahaya.

Energi dan Frekuensi

Planck menunjukkan bagaimana energi kuantum cahaya yang terkait terkait dengan frekuensi. Ia mendefinisikan sebuah konstanta, yang dikenal sebagai konstanta Planck, yang bila dikalikan dengan frekuensi kuantum cahaya, memberikan energi. Foton dengan frekuensi tinggi, seperti sinar-X, karena itu memiliki lebih banyak energi daripada frekuensi rendah, seperti gelombang radio. Konstanta Planck sangat kecil; Namun, sebagian besar sumber cahaya menghasilkan sejumlah besar partikel-partikel ini, sehingga total energi mungkin cukup.

Elektrodinamika Quantum

Saat teori kuantum dikembangkan, menjadi jelas bahwa kekuatan alam harus dilakukan dalam beberapa cara oleh agen yang tidak bisa melakukan perjalanan lebih cepat dari cahaya, dan bahwa agen ini harus “terkuantisasi”: mereka bisa eksis hanya sebagai kelipatan unit terpisahkan. Hubungan antara cahaya, listrik, dan magnet sudah dibuat jelas di abad ke-19. Pada saat itu, cahaya dan bentuk lain dari radiasi elektromagnetik diasumsikan terdiri dari gelombang. Menyusul penemuan foton, sebuah teori baru yang disebut elektrodinamika kuantum dikembangkan, yang menjelaskan bagaimana foton membawa gaya elektromagnetik.

Kecepatan Cahaya

Foton selalu bergerak dengan kecepatan cahaya dalam ruang hampa, yang kira-kira 186.000 mil (300.000 kilometer) per detik. Menurut Teori Relativitas khusus Einstein, tidak mungkin untuk setiap objek material untuk mencapai kecepatan ini, dengan meningkatnya massa dengan kecepatan, sehingga dibutuhkan lebih banyak energi untuk meningkatkan kecepatan. Foton bergerak pada kecepatan cahaya karena mereka tidak memiliki massa.
Cahaya dapat memperlambat, ketika melewati kaca, misalnya, tetapi partikel cahaya individu tidak melambat. Mereka diserap oleh atom, yang sementara mendapatkan energi, cepat melepaskan lagi dalam bentuk foton lain dengan frekuensi yang sama. Hal ini terjadi berkali-kali ketika cahaya melewati kaca (atau beberapa zat lain), dan sedikit jeda antara penyerapan dan pelepasan energi berarti bahwa partikel memakan waktu lebih lama untuk melewati mereka akan melewati udara atau ruang hampa. Setiap foton, bagaimanapun, selalu bergerak pada kecepatan cahaya.
mata wanita
Mata mengubah energi dari foton menjadi impuls listrik.
Relativitas khusus menunjukkan bahwa perjalanan mendekati kecepatan cahaya memiliki beberapa konsekuensi yang aneh. Misalnya, waktu yang melambat dibandingkan dengan benda-benda yang tidak bergerak, efek yang dikenal sebagai dilatasi waktu. Jika astronot bergerak dipercepat menjauh dari Bumi hanya sedikit di bawah kecepatan cahaya kemudian kembali setahun kemudian – menurut kalender – ia mungkin menemukan bahwa sepuluh tahun telah berlalu di Bumi. Hal ini tidak mungkin bagi astronot untuk mencapai kecepatan cahaya, tetapi banyak orang telah berspekulasi tentang apa dilatasi waktu akan berarti untuk foton. Menurut relativitas khusus, waktu harus berhenti sama sekali.
Galaksi Andromeda
Galaksi Andromeda dikatakan 2,2 juta tahun cahaya dari Bumi karena dibutuhkan 2,2 juta tahun untuk foton dari itu untuk mencapai Bumi.
Seorang manusia melihat Galaksi Andromeda, yang berjarak 2,2 juta tahun cahaya, adalah melihat foton yang – dari sudut pandang – telah melakukan perjalanan 2,2 juta tahun cahaya dan memakan 2,2 juta tahun untuk melakukannya. Bagaimanapun, dapat dikatakan, bahwa dari sudut pandang ‘foton, perjalanan tidak mengambil waktu sama sekali dan bahwa jarak yang ditempuh sebenarnya nol. Karena setiap partikel cahaya “lahir” dalam sebuah bintang dan ada sampai mengenai retina astronom, bisa juga dikatakan bahwa dari sudut pandang sendiri, foton ada untuk waktu nol, dan karena itu tidak ada sama sekali. Bagaimanapun, konsensus di antara para ilmuwan, adalah bahwa hal itu sama sekali tidak masuk akal untuk berpikir tentang partikel cahaya sebagai memiliki sudut pandang atau “mengalami” apa-apa.

Sejarah Penemuan Sinar X

Wilhem Conrad Roentgen
Minat yang besar untuk mendalami penelitian sinar katoda mendorong Roentgen mempersiapkan fasilitas untuk penelitian tersebut. Dalam suatu laboratorium yang luas, Roentgen memasang sebuah kumparan Ruhmkorff yang dilengkapi interuptor sehingga dapat membangkitkan bunga api listrik sepanjang 10-15 cm. Roentgen juga melengkapi peralatannya dengan tabung Hittorf-Crookes (tabung pelucutan), beberapa tabung Lenard, dan sebuah tabung yang baru diterima dari Muller-Unkel. Peralatan lain berupa pompa vakum Rap untuk menghampakan tabung-tabung tersebut.
Sinar-X diamati pertama kali oleh Roentgen pada 8 Nopember 1895, pada saat ia sedang bekerja dengan tabung Crookes di laboratoriumnya di Universitas Wurzburg. Dia mengamati nyala hijau pada tabung yang sebelumnya menarik perhatian Crookes. Roentgen selanjutnya mencoba menutup tabung itu dengan kertas hitam agar tidak ada cahaya tampak yang dapat lewat. Namun, ternyata masih sinar tidak tampak yang lewat.
Saat Roentgen menyalakan sumber listrik tabung untuk penelitian sinar katoda, ia mendapatkan ada sejenis cahaya berpendar pada layar yang terbuat dari barium platinosianida. Jika sumber listrik dipadamkan maka cahaya pendar pun hilang. Roentgen segera menyadari bahwa sejenis sinar yang tidak kelihatan telah muncul dari dalam tabung sinar katoda. Karena sebelumnya tidak pernah dikenal maka sinar ini diberi nama sinar-X. Untuk menghargai jasanya, sinar itu dinamakan juga sinar Roentgen.
Nyala hijau yang terlihat oleh Crookes dan Roentgen ternyata merupakan gelombang cahaya yang dipancarkan oleh dinding kaca tabung sewaktu elektron menabrak dinding itu. Pada saat yang bersamaan, elektron itu merangsang atom pada kaca untuk mengeluarkan gelombang elektromagnetik yang panjang gelombangnya sangat pendek, dalam bentuk sinar-X. Sejak saat itu, para ahli fisika mengetahui bahwa sinar-X dapat dihasilkan bila elektron dengan kecepatan yang sangat tinggi menabrak atom.
Tergiur oleh penemuannya yang tidak sengaja itu, Roentgen menyisihkan penyelidikan-penyelidikan lain dan memusatkan perhatiannya pada penyelidikan sinar-X. Dalam mempelajari sinar yang baru ditemukannya itu, Roentgen mendapatkan bahwa jika bahan yang tidak tembus oleh cahaya ditempatkan di antara tabung dan layar pendar, maka intensitas perpendaran pada layar itu berkurang, namun tidak hilang sama sekali. Hal ini menunjukkan bahwa sinar itu dapat menerobos bahan yang tidak tembus oleh cahaya biasa (cahaya tampak). Di samping itu, Roentgen juga bisa melihat bayangan tulang tangannya pada layar yang berpendar dengan cara menempatkan tangannya di antara tabung sinar katoda dan layar. Ia juga menemukan sinar-X dapat memendarkan berbagai senyawa kimia lain seperti senyawa calsium, kaca uranium, kalsit, serta batu garam. Hal lain yang dibuktikannya adalah sinar-X bukan partikel bermuatan karena berjalan melintasi garis lurus, tidak dibelokkan oleh medan listrik maupun medan magnet.
Percobaan lainnya yang dilakukan oleh Roentgen adalah dengan meminta istrinya sendiri menjadi objek percobaan. Dengan memasang film fotografi di dalam kaset dan menempatkan tangan istrinya di antara kaset dan tabung sinar katoda, pada film akhirnya tercetak ruas-ruas tulang telapak tangan Ny. Roentgen yang memakai cincin. Setelah berbagai percobaan dilakukannya, pada 28 Oktober 1895, ia menyampaikan karya tulis ilmiahnya yang pertama tentang penemuan sinar-X itu pada perkumpulan fisika kedokteran di Wurzburg.
Karya tulis ilmiah yang kedua tentang penemuan sinar-X diserahkan kepada Komisi Redaksi Perkumpulan Fisika Kedokteran pada 9 Maret 1896. Sebelumnya, pada 3 Maret 1896, Universitas Wurzburg mengangkatnya menjadi doktor kehormatan dalam ilmu kedokteran, meskipun pada waktu itu belum banyak orang yang menaruh harapan terhadap aplikasi praktis sinar-X dalam bidang kedokteran. Pada Nopember 1896, Roentgen mempresentasikan hasil penemuannya itu di depan perkumpulan fisika kedokteran Universitas Wurzburg.
Tanggapan terhadap penemuan sinar-X datang dari berbagai penjuru dunia. Dalam peringatan hari ulang tahun Univeristas Berlin yang ke-50 dipamerkan hasil penemuan Roentgen. Berbagai penghargaan internasional juga diterima oleh Roentgen, seperti Rumford Medal dari Royal Society di London pada 1896, medali dari Franklin Institute di Philadelphia dan medali dari kerajaan Italia. Penghargaan juga datang dari Kaisar Wilhelm II yang pada saat itu memerintah Jerman. Undangan untuk memamerkan hasil penemuannya itu datang pada 13 Januari 1896. Pada kesempatan itu, Roentgen dianugerahi Bintang Orde Mahkota Prusia Kelas II. Pengakuan internasional ditandai dengan dianugerahkannya hadiah Nobel bidang fisika pada 1901 (enam tahun setelah penemuan) kepada W.C. Roentgen. Ini merupakan hadiah Nobel yang pertama kali diberikan dalam bidang fisika.

Prisma Kopler

Cahaya dapat dikopel ke dalam dan ke luar dari suatu pandu gelombang dengan menggunakan prisma. Suatu prisma dengan indeks bias np > n2 diletakkan pada suatu jarak dp dari pandu gelombang dengan indeks bias n1 dan n2 seperti diilustrasikan dalam Gb. 4.17.

Suatu gelombang optik datang pada prisma sedemikian rupa sehingga mengalami pemantulan sempurna di dalam prisma dengan sudut θp. Gelombanggelombang cahaya datang dan yang terpantul membentuk suatu gelombang menjalar dalam arah-z dengan konstanta perambatan: p p 0 p β = n k cos θ (4.42) Distribusi medan transversal akan melebar keluar prisma dan meluruh secara eksponensial di dalam ruang antara prisma dan slab pandu gelombang. Bila jarak dp cukup kecil, gelombang akan dikopel menjadi suatu modus pandu gelombang dengan konstanta perambatan βm ≈ βp . Bila daya dapat dikopel ke dalam pandu gelombang melalui prisma, maka prisma bertindak sebagai input kopler. Output kopler bekerja sebaliknya yaitu mengeluarkan cahaya dari pandu gelombang ke udara.

 

Waspada, laser terhadap mainan anak "Berbahaya"


Semakin banyaknya pilihan mainan anak membuat orangtua harus lebih selektif. Karena ada juga pilihan mainan yang justru membahayakan kesehatan si kecil dan lingkungannya, salah satunya mainan yang dilengkapi dengan sinar laser.
Menurut Pengawas Makanan dan Obat Amerika Serikat (FDA), mainan dengan sinar laser berisiko mengakibatkan cedera mata serius dan bahkan kebutaan.
"Sinar laser yang tersorot langsung ke mata seseorang bisa melukainya dalam sekejap, terutama jika laser tersebut termasuk laser yang kuat," kata Dan Hewett, petugas promosi kesehatan untuk Perangkat dan Radiologi Kesehatan FDA.
Hewett mengatakan, cedera mata yang diakibatkan oleh laser biasanya tidak sakit, tetapi penglihatan dapat memburuk secara perlahan dari waktu ke waktu. Cedera ini mungkin tidak disadari dalam hitungan hari dan bahkan minggu. Dan cedera ini bisa permanen.
Berikut ini contoh mainan yang sering kali dilengkapi dengan laser:
- Senapan mainan yang menggunakan laser untuk membidik
- Gasing yang menyala saat berputar
- Pedang-pedangan laser
- Laser dimaksudkan untuk hiburan yang menciptakan efek optik di ruang terbuka

FDA sangat fokus pada laser pada mainan anak karena anak-anak kerap terluka oleh benda-benda ini. Menurut Hewett, benda-benda tersebut dipromosikan sebagai mainan, sehingga orangtua dan anak-anak percaya itu semua aman untuk digunakan.
Dalam beberapa tahun terakhir, imbuhnya, intensitas sinar laser cenderung lebih tinggi. Hal ini mungkin disebabkan oleh harganya yang semakin murah.
FDA mengimbau, agar tetap aman menggunakan mainan yang dilengkapi sinar laser, maka sebaiknya tidak mengarahkan sinar laser langsung kepada orang atau hewan. Energi cahaya dari laser yang ditujukan ke mata bisa berbahaya, bahkan mungkin lebih berbahaya dari menatap matahari secara langsung. Dan juga tidak mengarahkan laser pada permukaan yang reflektif.
Perlu diingat pula, laser yang disorotkan pada pengendara dapat menyebabkan kecelakaan serius. Sinar laser juga dapat menyebabkan cedera bagi orang yang melakukan kegiatan-kegiatan tertentu, seperti olahraga.

Efek Fotolistrik


Pernahkah kamu melihat pelangi? Pernahkah kamu melihat warna-warni di jalan aspal yang basah? Pelangi terjadi akibat dispersi cahaya matahari pada titik-titik air hujan. Adapun warna-warni yang terlihat di jalan beraspal terjadi akibat gejala interferensi cahaya. Gejala dispersi dan interferensi cahaya menunjukkan bahwa cahaya merupakan gejala gelombang. Gejala difraksi dan polarisasi cahaya juga menunjukkan sifat gelombang dari cahaya.
pola warna-warni di atas aspal basah yang dikenai bensin terjadi akibat interferensi cahaya
Gejala fisika yang lain seperti spektrum diskrit atomik, efek fotolistrik, dan efek Compton menunjukkan bahwa cahaya juga dapat berperilaku sebagai partikel. Sebagai partikel cahaya disebut dengan foton yang dapat mengalami tumbukan selayaknya bola.
Efek Fotolistrik
Ketika seberkas cahaya dikenakan pada logam, ada elektron yang keluar dari permukaan logam. Gejala ini disebut efek fotolistrik. Efek fotolistrik diamati melalui prosedur sebagai berikut. Dua buah pelat logam (lempengan logam tipis) yang terpisah ditempatkan di dalam tabung hampa udara. Di luar tabung kedua pelat ini dihubungkan satu sama lain dengan kawat. Mula-mula tidak ada arus yang mengalir karena kedua plat terpisah. Ketika cahaya yang sesuai dikenakan kepada salah satu pelat, arus listrik terdeteksi pada kawat. Ini terjadi akibat adanya elektron-elektron yang lepas dari satu pelat dan menuju ke pelat lain secara bersama-sama membentuk arus listrik.
Hasil pengamatan terhadap gejala efek fotolistrik memunculkan sejumlah fakta yang merupakan karakteristik dari efek fotolistrik. Karakteristik itu adalah sebagai berikut.

    hanya cahaya yang sesuai (yang memiliki frekuensi yang lebih besar dari frekuensi tertentu saja) yang memungkinkan lepasnya elektron dari pelat logam atau menyebabkan terjadi efek fotolistrik (yang ditandai dengan terdeteksinya arus listrik pada kawat). Frekuensi tertentu dari cahaya dimana elektron terlepas dari permukaan logam disebut frekuensi ambang logam. Frekuensi ini berbeda-beda untuk setiap logam dan merupakan karakteristik dari logam itu.
    ketika cahaya yang digunakan dapat menghasilkan efek fotolistrik, penambahan intensitas cahaya dibarengi pula dengan pertambahan jumlah elektron yang terlepas dari pelat logam (yang ditandai dengan arus listrik yang bertambah besar). Tetapi, Efek fotolistrik tidak terjadi untuk cahaya dengan frekuensi yang lebih kecil dari frekuensi ambang meskipun intensitas cahaya diperbesar.
    ketika terjadi efek fotolistrik, arus listrik terdeteksi pada rangkaian kawat segera setelah cahaya yang sesuai disinari pada pelat logam. Ini berarti hampir tidak ada selang waktu elektron terbebas dari permukaan logam setelah logam disinari cahaya.

Karakteristik dari efek fotolistrik di atas tidak dapat dijelaskan menggunakan teori gelombang cahaya. Diperlukan cara pandang baru dalam mendeskripsikan cahaya dimana cahaya tidak dipandang sebagai gelombang yang dapat memiliki energi yang kontinu melainkan cahaya sebagai partikel.
Perangkat teori yang menggambarkan cahaya bukan sebagai gelombang tersedia melalui konsep energi diskrit atau terkuantisasi yang dikembangkan oleh Planck dan terbukti sesuai untuk menjelaskan spektrum radiasi kalor benda hitam. Konsep energi yang terkuantisasi ini digunakan oleh Einstein untuk menjelaskan terjadinya efek fotolistrik. Di sini, cahaya dipandang sebagai kuantum energi yang hanya memiliki energi yang diskrit bukan kontinu yang dinyatakan sebagai E = hf.
Konsep penting yang dikemukakan Einstein sebagai latar belakang terjadinya efek fotolistrik adalah bahwa satu elektron menyerap satu kuantum energi. Satu kuantum energi yang diserap elektron digunakan untuk lepas dari logam dan untuk bergerak ke pelat logam yang lain. Hal ini dapat dituliskan sebagai
Energi cahaya = Energi ambang + Energi kinetik maksimum elektron
E = W0 + Ekm
hf = hf0 + Ekm
Ekm = hf – hf0
Persamaan ini disebut persamaan efek fotolistrik Einstein. Perlu diperhatikan bahwa W0 adalah energi ambang logam atau fungsi kerja logam, f0 adalah frekuensi ambang logam, f adalah frekuensi cahaya yang digunakan, dan Ekm adalah energi kinetik maksimum elektron yang lepas dari logam dan bergerak ke pelat logam yang lain. Dalam bentuk lain persamaan efek fotolistrik dapat ditulis sebagai
Dimana m adalah massa elektron dan ve adalah dan kecepatan elektron. Satuan energi dalam SI adalah joule (J) dan frekuensi adalah hertz (Hz). Tetapi, fungsi kerja logam biasanya dinyatakan dalam satuan elektron volt (eV) sehingga perlu diingat bahwa 1 eV = 1,6 × 10−19 J.

Profil Step-Index dan Graded-Index (Serat Optik)


Berdasarkan susunan index biasnya serat optik multimode memiliki dua profil yaitu graded index dan step index.
Step indeks : pada serat optik step indeks, core memiliki indeks bias yang homogen.
Jenis Serat Optik . Pada serat optik step index (mempunyai index bias cahaya sama) sinar yang menjalar pada sumbu akan sampai pada ujung lainnya dahulu (dispersi) Hal ini dapat terjadi karena lintasan yang melalui poros lebih pendek dibandingkan sinar yang mengalami pemantulan pada dinding serat optik. Sebagai hasilnya terjadi pelebaran pulsa atau dengan kata lain mengurangi lebar bidang frekuensi.

Multimode Step Index Fiber
Serat optik ini pada dasarnya mempunyai diameter core yang besar (50 – 400 um) dibandingkan dengan diameter cladding (125 – 500 um). Sama halnya dengan single mode fiber, pada serat optik ini terjadi perubahan index bias dengan segera (step index) pada batas antara core dan cladding. Diameter core yang besar (50 – 400 um) digunakan untuk menaikkan effisiensi coupling pada sumber cahaya yang tidak koheren seperti LED. Karakteristik penampilan serat optik ini sangat bergantung pada macam material/bahan yang digunakan. Berdasarkan hasil penelitian, penambahan prosentase bahan silica pada serat optik ini akan meningkatkan penampilan (performance). Tetapi jenis serat optik ini tidak populer karena meskipun kadar silicanya ditingkatkan, rugi-rugi dispersi sewaktu transmit tetap besar, sehingga hanya baik digunakan untuk menyalurkan data/informasi dengan kecepatan rendah dan jarak relatif dekat.
Graded indeks : pada serat graded index, serat optik mempunyai index bias cahaya yang merupakan fungsi dari jarak terhadap sumbu/poros serat optik.  Indeks bias core semakin mendekat ke arah cladding semakin kecil. Jadi pada graded indeks, pusat core memiliki nilai indeks bias yang paling besar. Serat graded indeks memungkinkan untuk membawa bandwidth yang lebih besar, karena pelebaran pulsa yang terjadi dapat diminimalkan. Dengan demikian cahaya yang menjalar melalui beberapa lintasan pada akhirnya akan sampai pada ujung lainnya pada waktu yang bersamaan. Oleh karena itu secara praktis hanya serat optik graded index sajalah yang dipergunakan sebagai saluran transmisi serat optik multimode.

Multimode Graded index
Multimode graded index dibuat dengan menggunakan bahan multi component glass atau dapat juga dengan silica glass baik untuk core maupun claddingnya. Pada serat optik tipe ini, indeks bias berubah secara perlahan-lahan (graded index multimode). Indeks bias inti berubah mengecil perlahan mulai dari pusat core sampai batas antara core dengan cladding. Makin mengecilnya indeks bias ini menyebabkan kecepatan rambat cahaya akan semakin tinggi dan akan berakibat dispersi waktu antara berbagai mode cahaya yang merambat akan berkurang dan pada akhirnya semua mode cahaya akan tiba pada waktu yang bersamaan di penerima (ujung serat optik). Diameter core jenis serat optik ini lebih kecil dibandingkan dengan diameter core jenis serat optic Multimode Step Index, yaitu 30 – 60 um untuk core dan 100 – 150 um untuk claddingnya.
Biaya pembuatan jenis serat optik ini sangat tinggi bila dibandingkan dengan jenis Single mode. Rugi-rugi transmisi minimum adalah sebesar 0,70 dB/km pada panjang gelombang 1,18 um dan lebar band frekwensi 150 MHz sampai dengan 2 GHz. Oleh karenanya jenis serat optik ini sangat ideal untuk menyalurkan informasi pada jarak menengah dengan menggunakan sumber cahaya LED maupun LASER, di samping juga penyambungannya yang relatif mudah.
Serat optik single mode/monomode mempunyai diameter inti (core) yang sangat kecil 3 – 10 m m, sehingga hanya satu berkas cahaya saja yang dapat melaluinya. Oleh karena hanya satu berkas cahaya maka tidak ada pengaruh index bias terhadap perjalanan cahaya atau pengaruh perbedaan waktu sampainya cahaya dari ujung satu sampai ke ujung yang lainnya (tidak terjadi dispersi). Dengan demikian serat optik singlemode sering dipergunakan pada sistem transmisi serat optik jarak jauh atau luar kota (long haul transmission system).

Saat ini tipe dari jenis fiber single mode ini dapat digunakan pada STM-1 (155 Mbit/s) untuk mencakup jarak lebih dari 1280 km tanpa menggunakan repeater (pengulang/penguat) dan pada STM 4 (622 Mbit/s) digunakan untuk jarak lebih dari 160 km dengan memakai amplifier fiber optik. Menurut ITU-T jarak yang dapat dicakup untuk STM 16 adalah sebesar 160 km, tetapi jarak tersebut hanya dapat dicapai dengan menggunakan post amplifier (penguat) optic dan pre-amplifier sedangkan untuk STM 64 jarak yang dapat dicakup adalah sebesar 40 – 80 km.

Manfaat Sinar Gama dalam Kehidupan sehari-hari


Dalam realitas sehari-hari Sinar Gamma digunakan untuk kesehatan. Pada dasarnya Sinar Gamma menyebabkan luka bakar pada kulit, dan bisa menyebabkan kerusakan organ internal/radiation sickness, karena sifatnya yang bisa menembus tubuh. Efeknya lebih meningkatkan resiko kanker daripada luka bakar.
Sinar Gamma sering digunakan untuk membunuh organisme yang dikenal dengan istilah irradiation. Aplikasinya untuk mensterilkan peralatan medis, membuang kerusakan yang diakibatkan oleh bakteri pada makanan, mencegah buah dan sayuran dari kecambah, serta mempertahankan kesegaran dan rasanya.
Karena bisa memusnahkan sel, Sinar Gamma digunakan untuk mengobati tipe kanker tertentu. Serangkaian Sinar Gamma dipancarkan langsung pada sel yang terkena kanker untuk dimusnahkan. Prosedur ini dikenal dengan istilah Gamma-Knife Surgery (pembedahan dengan pisau gamma).
Jika Sinar Gamma mengenai molekul DNA dalam batas tertentu, sel tubuh akan memperbaiki gen yang rusak. Proses perbaikan sel berhasil setelah paparan dosis tinggi dilakukan. Sedangkan untuk paparan dosis rendah proses perbaikannya lambat.
Ø  Manfaat Lain Dari Sinar Gamma
memmbunuh bakteri dan serangga dan memperpanjang umur makanan. Bakteri dan serangga bersaing dengan manusia untuk memperoleh makanan. Manusia, bakteri, dan serangga sama-sama suka makan nasi, daging, sayur, dan susu. Sayangnya, bakteri sering mencuri makanan yang disimpan manusia. Yap, makanan yang disimpan jadi busuk dan beracun gara-gara dimakan bakteri dan serangga. Padahal, manusia harus menyimpan makanan untuk persediaan hari esok. Apakah ada cara ampuh untuk mengusir bakteri dan serangga?
Sekali Sorot, Bakteri Melayang
Kenapa bakteri dan serangga tiba-tiba tewas? Wow, rupanya ada kekuatan canggih untuk melawan bakteri dan serangga. Kekuatan itu mengeluarkan sinar yang dahsyat. Kekuatan apakah itu? Itulah mesin sinar gamma. Sinar gamma berasal dari bahan radioaktif. Bahan radioaktif adalah bahan yang secara alami memancarkan energi. Pancaran energi radioaktif bermacam-macam. Ada yang berbentuk sinar X, sinar beta, dan sinar gamma. Pancaran bahan radioaktif dapat merusak sel tubuh makhluk hidup. Artinya, jika makhluk hidup kena pancaran sinar radioaktif terlalu lama, maka makhluk hidup bisa mati. Nah, sedikit saja pancaran sinar radioaktif dapat mematikan bakteri dan serangga. Sekali sorot, bakteri dan serangga langsung mati. Kekuatan sinar gamma sangat dahsyat. Efek serta Akibat yang ditimbulkan oleh radiasi zat radioaktif pada manusia seperti berikut : Pusing-pusing, Nafsu makan berkurang atau hilang, Terjadi diare, Badan panas atau demam, Berat badan turun, Kanker darah atau leukimia, Meningkatnya denyut jantung atau nadi, Daya tahan tubuh berkurang sehingga mudah terserang penyakit akibat sel darah putih yang jumlahnya berkurang.
Dinding Super Tebal
Ilmuwan menggunakan sinar gamma untuk membunuh bakteri jahat dan serangga yang merusak makanan. Makanan yang disinari sinar gamma disebut makanan iradiasi. Bagaimana makanan iradiasi dibuat? Makanan iradiasi dibuat dengan super hati-hati. Karena sinar gamma hanya dapat diperoleh dari bahan radioaktif yang sangat berbahaya. Bahan radioaktif ditaruh dalam kotak berlapis timah super tebal. Kotak berdinding tebal ini disebut mesin penghasil sinar gamma. Ilmuwan harus memakai baju anti radiasi saat mengutak-atik mesin sinar gamma. Makanan lalu dimasukkan dalam ruangan berlapis timah. Makanan dihadapkan pada mesin penghasil sinar gamma. Lalu, sinar gamma disorotkan ke makanan selama sedetik. Hasilnya? 99 persen bakteri dan serangga langsung mati!
Makanan Astronot

Uniknya, makanan iradiasi tidak beracun. Karena makanan iradiasi tidak bersentuhan langsung dengan zat radioaktif. Dosis sinar gamma yang dipakai juga tidak merusak sel makanan. Sel makanan tetap utuh sehingga gizi makanan tidak berkurang. Makanan jadi tahan lama karena tidak ada bakteri dan serangga yang merusak makanan. Badan pangan dan kesehatan dunia (FAO dan WHO) menyatakan makanan iradiasi tidak berbahaya bagi manusia. Makanan iradiasi pertama kali dipakai untuk misi antariksa. Para astronot bekerja di antariksa yang jauh dari Bumi yang nyaman. Badan astronot dijaga betul agar tidak sakit. Kebayang enggak sih, betapa repotnya astronot jika sakit? Oleh karena itu, makanan astronot harus steril alias bersih dari bakteri dan serangga. Kata para astronot, makanan iradiasi lebih tahan lama daripada makanan panas atau beku. Rasa makanan iradiasi sama dengan aslinya.

Photometry


Photometry merupakan pengetahuan tentang pengukuran cahaya dalam hal kecerahan atau tingkat terang yang dirasakan oleh mata manusia. Dalam photometry, daya radiasi pada masing-masing panjang gelombang digambarkan dalam fungsi luminosity.
Pada dasarnya sensitivitas mata manusia tidak sama untuk semua jenis panjang gelombang cahaya visible (tampak) pada percobaan photometry untuk mengukur daya pada masing-masing panjang gelombang tersebut yang direpresentasikan oleh sensitivitas mata terhadap panjang gelombang itu. Model standar dari respon mata terhadap cahaya sebagai fungsi panjang gelombang diberikan oleh fungsi luminosity. Sebagai catatan bahwa mata manusia memiliki perbedaan dalam melakukan respon terhadap sesuatu dan itu dijadikan sebagai fungsi gelombang pada saat terjadi adaptasi dengan kondisi terang (photopic vision) dan kondisi gelap (scotopic vision). Pengukuran photometri mungkin tidak akurat karena kecerahan kondisi sumber cahaya yang warnanya tidak dapat dilihat, seperti cahaya bulan atau cahaya bintang. Besarnya daya atau intensitas dari suatu sumber cahaya pada suatu jarak tertentu sangat bergantung pada letak jarak yang menjadi acuan terhadap sumber cahaya tersebut. Perhatikan gambar 2.9(a). Gambar 2.9(a) mendeskripsikan bahwa pada permukaan AB dengan luasan S1, energi yang mengalir perdetik. Diketahui bahwa besarnya energi yang mengalir pada permukaan S1 adalah sama dengan S2.
Dalam photometrik, setiap besaran panjang gelombangnya diukur menurut sensitivitas mata manusia. Contohnya, respon mata lebih kuat ketika melihat cahaya hijau daripada responnya terhadap cahaya merah. Jadi cahaya hijau akan memiliki fluk luminous lebih besar dibandingkan dengan cahaya merah. Satuan fluks luminous (F) adalah lumen yang didefinisikan sebagai fluks luminous per satuan solid angle dalam kaitannya dengan titik sumber dari Intensitas cahaya.
Intensitas iluminasi (I) hanya akan bergantung pada daya iluminasi (L) dan kuadrat jarak antara sumber dengan permukaan. Semakin besar daya iluminasinya maka semakin besar intensitas iluminasinya, dan semakin besar jarak antara sumber cahaya dengan maka semakin kecil intensitas iluminasinya.

sejarah fiber optik



GENERASI 1 PERKEMBANGAN SERAT OPTIK
• Generasi pertama (mulai 1975)
• Sistem masih sederhana dan menjadi dasar bagi sistem generasi berikutnya, terdiri dari : • alat encoding : mengubah input (misal suara) menjadi sinyal listrik. • transmitter : mengubah sinyal listrik menjadi sinyal gelombang, berupa LED dengan panjang gelombang 0,87 mm. • serat silika : sebagai penghantar sinyal gelombang • repeater : sebagai penguat gelombang yang melemah di perjalanan • receiver : mengubah sinyal gelombang menjadi sinyal listrik, berupa fotodetektor • decoding : mengubah sinyal listrik menjadi output (misal suara) • Repeater bekerja melalui beberapa tahap, mula-mula ia mengubah sinyal gelombang yang sudah melemah menjadi sinyal listrik, kemudian diperkuat dan diubah kembali menjadi sinyal gelombang.
• Generasi pertama ini pada tahun 1978 dapat mencapai kapasitas transmisi sebesar 10 Gb.km/s.

GENERASI 2 PERKEMBANGAN SERAT OPTIK
• Generasi kedua (mulai 1981)
• Untuk mengurangi efek dispersi, ukuran teras serat diperkecil agar menjadi tipe mode tunggal.
• Indeks bias kulit dibuat sedekat-dekatnya dengan indeks bias teras. Dengan sendirinya transmitter juga diganti dengan diode laser, panjang gelombang yang dipancarkannya 1,3 mm.
• Dengan modifikasi ini generasi kedua mampu mencapai kapasitas transmisi 100 Gb.km/s, 10 kali lipat lebih besar daripada generasi pertama.

GENERASI 3 PERKEMBANGAN SERAT OPTIK
• Generasi ketiga (mulai 1982)
• Terjadi penyempurnaan pembuatan serat silika dan pembuatan chip diode laser berpanjang gelombang 1,55 mm.
• Kemurnian bahan silika ditingkatkan sehingga transparansinya dapat dibuat untuk panjang gelombang sekitar 1,2 mm sampai 1,6 mm.
• Penyempurnaan ini meningkatkan kapasitas transmisi menjadi beberapa ratus Gb.km/s.

GENERASI 4 PERKEMBANGAN SERAT OPTIK
• Generasi keempat (mulai 1984)
• Dimulainya riset dan pengembangan sistem koheren, modulasinya yang dipakai bukan modulasi intensitas melainkan modulasi frekuensi, sehingga sinyal yang sudah lemah intensitasnya masih dapat dideteksi. Maka jarak yang dapat ditempuh, juga kapasitas transmisinya, ikut membesar.
• Pada tahun 1984 kapasitasnya sudah dapat menyamai kapasitas sistem deteksi langsung. Generasi ini terhambat perkembangannya karena teknologi piranti sumber dan deteksi modulasi frekuensi masih jauh tertinggal. Tetapi tidak dapat disangkal bahwa sistem koheren ini punya potensi untuk maju pesat pada masamasa yang akan datang.

TERMINASI PADA KABEL SERAT OPTIK



• Ujung kabel serat optik berakhir di sebuah terminasi, untuk hal tersebut dibutuhkan penyambungan kabel serat optik dengan pigtail serat optik di Optical Termination Board (OTB), bisa wallmount atau 1U rackmount. Dari OTB kabel serat optik tinggal disambung dengan patchcord serat optik ke perangkat multiplexer, switch atau bridge (converter to ethernet UTP)

• Penyambungan kabel serat optik disebut sebagai splicing. • Splicing menggunakan alat khusus yang memadukan dua ujung kabel seukuran rambut secara presisi, dibakar pada suhu tertentu sehingga kaca meleleh tersambung tanpa bagian coated-nya ikut meleleh.

• Setelah tersambung, bagian sambungan ditutup dengan selubung yang dipanaskan. Alat ini mudah dioperasikan, namun sangat mahal harganya. • Inilah sebabnya meskipun harga kabel fiber optik sudah jauh lebih murah namun alat dan biaya lainnya masih mahal, terutama pada biaya pemasangan kabel, splicing dan terminasinya.

• Pigtail yang disambungkan ke kabel optik bisa bermacam-macam konektornya, yang paling umum adalah konektor FC. • Dari konektor FC di OTB ini kita tinggal menggunakan patchcord yang sesuai untuk disambungkan ke perangkat. Umumnya perangkat optik seperti switch atau bridge menggunakan konektor SC atau LC. Cukup menyulitkan ketika menyebut jenis konektor yang kita kehendaki kepada penjual, FC, SC, ST, atau LC.

• Setelah kabel optik terpasang di OTB dilakukan pengujian end-to-end dengan menggunakan Optical Time Domain Reflectometer (OTDR).

• Dengan OTDR akan didapatkan kualitas kabel, seberapa besar loss cahaya dan berapa panjang kabel totalnya. Harga perangkat OTDR ini sangat mahal, meskipun pengoperasiannya relatif mudah.

• OTDR ini digunakan pula pada saat terjadi gangguan putusnya kabel laut atau terestrial antar kota, sehingga bisa ditentukan di titik mana kabel harus diperbaiki dan disambung kembali

• Untuk keperluan sederhana misalnya sambungan fiber optik antar gedung pada jarak ratusan meter (hingga 15km) kini teknologi bridge/converter-nya sudah semakin murah dengan kapasitas 100Mbps, sedangkan untuk full gigabit harga switch/module-switchnya masih mahal.

• Jadi, meskipun harga kabel serat optik sudah di kisaran Rp10.000/m namun total pemasangannya membengkak karena ada biaya SDM yang menarik dan memasang kabel, biaya splicing setiap core-nya, pemasangan OTB, pengujian OTDR, penyediaan patchcord dan perangkat optiknya sendiri (switch/bridge).
 
Blogger Templates